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UNIVERSITY OF KARACHI 

ABSTRACT 

ESTIMATING TERM STRUCTURE OF INTEREST RATE: 
A PRINCIPAL COMPONENT, POLYNOMIAL APPROACH 

 

by  

Nasir Ali Khan 

 

Polynomial functions of the term to maturity have long been used to provide a 

general function form for the zero coupon yield curve. I propose a new zero 

coupon yield curve functional form consisting not of simple polynomial of term, 

t, but rather constructed from 1/(1+t). I model zero-coupon yield as a linear 

function of the k principal components of n polynomials of 1/(1+t). The 

principal component of polynomials of 1/(1+t) model is applied to PIB bonds 

data.   
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1.0 INTRODUCTION 

1.1 Term Structure of Interest Rate 

The term of interest rate at any time is the relationship of bond maturity and bond yield of 

similar instruments. It is constructed by graphing time to maturity against yield to maturity for 

the bond with the same credit risk.  The term structure of interest rates, also known as the 

yield curve, is a very common bond valuation method. Constructed by graphing the yield to 

maturities and the respective maturity dates of benchmark fixed-income securities, the yield 

curve is a measure of the market's expectations of future interest rates given the current market 

conditions. Treasuries, issued by the federal government, are considered risk-free, and as such, 

their yields are often used as the benchmarks for fixed-income securities with the same 

maturities. The term structure of interest rates is graphed as though each coupon payment of a 

fixed-income security were a zero-coupon bond that “matures” on the coupon payment date. 

The exact shape of the curve can be different at any point in time.  

1.2 Pricing Bonds 

The price of a bond is the present value of all its cash flows. Therefore, the price a bond is 

equals to the sum of the present value of all the coupon interest payments and the present 

value of the face value. The price of a bond that pays yearly coupon can therefore be given by:  
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P = Price of a bond 

C = Coupon payment 

r  = Discount rate or Required yield 

N = Numbers of year to maturity  

M = Face value of bond 
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The simplest measure of the yield on a bond is the current yield. Current yield is ratio of 

coupon and the current price of a bond. It essentially calculates the bond coupon income as a 

proportion of the price.  

Yield to Maturity (YTM) is the periodic interest rate that equates the present value of the 

future cash flows to be received on the bond to the initial investment on the bond or its 

current price. This means that yield to maturity is the internal rate of return (IRR) on the bond 

investment.  

To calculate the yield to maturity, the coupon, numbers of years to maturity and the face value 

of the bond are known, and the discount rate or yield to maturity is the variable to be 

determined. 
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The yield for a zero-coupon bond or zero-coupon rate is also called the spot rate for the 

maturity of the bond. For the zero-coupon bonds, the yield to maturity and the spot rate are 

equal. When considering coupon-paying bonds, the yield to maturity is a weighted average of 

the spot rates corresponding to each coupon payment. When valuing bonds, the spot rate is 

commonly used to calculate the present value of the cash flows because there is no concern 

about the reinvestment rate for the coupons received over time. 

1.3 Data 

Data is based on the market yields on 12 March 2004 for a set of traded Pakistan Investment 

Bonds (PIB). The data consisted of yield and specification for 28 coupon-paying bonds. The 

term of the bonds ranged from about 6 months to 15 years. The coupon rate ranged from 

1.48% to 8.64%   



 

 6

1.4 Methodology 

This paper proposes a new and relatively simple method for deriving a zero-coupon bond yield 

Curve from the market prices of coupon paying treasury bonds. 

A coupon bond may be priced a number of ways. The traditional procedure is to discount all 

of the bonds cash flow at the market-determined yield to maturity. 
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Where P( ym ) is the price of a period bond when the yield to maturity is ym, Ct is the coupon 

payment at time t and M is the bond’s face value. 

A coupon bond is a bundle of zero coupon bonds with each coupon payment constituting a 

single zero bonds.  An alternative pricing method uses constituent zero coupon rates. A bond’s 

cash flows are discounted with the relevant zero coupon rate, rather then yield to maturity, 

provided by the prevailing zero coupon yield curve. Here, 
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Where yz is the zero coupon rate applicable t a term of ith periods. 

The zero coupon yield curve yz, may be estimated as a particular function of the term, t, that 

minimizes the sum of the squared differences between the actual market bond prices and zero 

coupon bond price. The zero coupon yield is estimated by minimizing, 
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Zero coupon rates are rarely directly observable in financial markets. Attempting to extract 

zero-coupon rates from the prices of those risk-free coupon-bearing instruments, which are 

observable, namely government bonds, various models and numerical techniques have been 

developed. Such models can broadly be categorized into parametric and spline-based 

approaches, where a different trade-off between the flexibility to represent shapes generally 

associated with the yield curve (goodness-of-fit) and the smoothness characterizes the different 

approaches 

Parametric model, the method developed by Nelson and Siegel (1987) attempts to estimate 

these relationships by fitting for a point in time t a discount function to bond price data by 

assuming explicitly the zero-coupon or spot interest rate curve can be derived by integrating 

the forward rate curve: 
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In this equation m denotes time to maturity, t the time index and βt,0, βt,1,βt,2 and τt,1 are 

parameters to be estimated. For long maturities, spot and forward rates approach 

asymptotically the value b0, which must be positive. (β0 + β1) determines the starting value of 

the curve at maturity zero; b1 thus represents the deviation from the asymptote β0. In 

addition, (β0 + β1) must also be positive. The remaining two parameters β2 and τ1 are 

responsible for the “hump”. The hump’s magnitude is given by the absolute size of β2 while 

the sign give its direction: a negative sign indicates a U-shape and a positive sign a hump. τ1, 

which again must be positive, determines the position of the hump. 

To improve the flexibility of the curves and the fit, Svensson (1994) extended Nelson and 

Siegel’s function by adding a further term that allows for a second “hump”. The extra 

precision is achieved at the cost of adding two more parameters, β3 and τ2, which have to be 

estimated.  

Spline-based methods fit the yield curve by relying on a piecewise polynomial, the spline 

function3, where the individual segments are joined smoothly at the so-called knot points. 
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Over a closed interval, a given continuous function can be approximated by selecting an 

arbitrary polynomial, where the goodness-of-fit increases with the order of the polynomial. 

Higher-order polynomials, however, quite frequently display insufficient smoothing 

properties. This problem can be avoided by relying on a piecewise polynomial whereby the 

higher-order polynomial is approximated by a sequence of lower-order polynomials. 

Consequently, spline functions are generally based on lower-order polynomials (mostly 

quadratic or cubic). A cubic spline, for instance, is a piecewise cubic polynomial restricted at 

the knot points such that their levels and first two derivatives are identical. One parameter 

corresponds to each knot in the spline. The McCulloch (1975) method uses cubic spline to 

approximate the discount function. The spline is estimated using ordinary least squares. The 

mean price is used as the dependent variable and the fitted price errors are weighted by the 

inverse of the spread. The numbers of parameters are moderate; however the functional 

form lead to discount rates that tend to positive or negative infinity when extrapolated. In 

the case of “smoothing splines”, the number of parameters to be estimated is not fixed in 

advance. Instead, one starts from a model, which is initially over-parameterized. Allowing for 

a large number of knot points guarantees sufficient flexibility for curvature throughout the 

spline. The optimal number of knot points is then determined by minimizing the ratio of a 

goodness-of-fit measure to the number of parameters. This approach penalizes for the 

presence of parameters, which do not contribute significantly to the fit. It is not convenient 

to draw on the (varying number of) parameters in disseminating yield curve information. 

Nelson & Siegal specified the yield curve as a four parameter Laguerre function: 

tz etty 3)()( 210
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The Laguerre yield curve has many beneficial aspects. Its flexibility allows for a number of 

yield curve shapes such as trenches and humps. It also produces sensible rates at the 

extremities of the term structure, y (0) = β0+β1 and y (∞) = β0. For many yield curve shapes, 

the non-linear least square estimation process necessary to estimate (4) fails to converge 

Laguerre form. An alternative to the Laguerre form is the polynomial yield curve. For 

example, a four-parameter polynomial yield curve is specified as: 
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Polynomial zero coupon yield curve models invariably produces convergence in the 

estimation process. This form is capable of providing all commonly observed yield curve 

shapes. The polynomial form is general function that provides a good approximation to any 

yield curve function, as the tailor series expansion shows. The primary failing of the 

polynomial form concerns the rate at the long end of the term structure. 

I suggest a polynomial of a simple transformation of the term, t, that removes the problem 

of the long rate instability inherent in this simple polynomial model (5) while retaining the 

tractable estimation property of the polynomial from. 

Polynomial of 1/(1+t) are well behaved in that they approach a constant as t increases. We 

propose the following zero coupon yield curve; 
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This paper model zero coupon yield as a function of the principal component of polynomial 

of 1/ (1+t), where t is the term of zero coupon instrument. We suggest a new principal 

component approach to selecting a k parameter model from a possible p polynomial terms. 

This approach employs principal components of polynomials of 1/(1+t). Specifically, our 

approach uses the best k principal components extracted from p polynomials of 1/(1+t)  

This functional form not only has the flexibility, generality and tractable estimation properties 

of all polynomial forms, but also, and most importantly, the zero-coupon yields, implied by the 

models, approach some long term as the term increases.  
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2.0 PRINCIPAL COMPONENT ANALYSIS 

2.1 Introduction 

Many variables are characterized by a high degree of co linearity between the returns. 

Collinearity is when the returns process exhibits a very high level of correlation. Collinear 

systems occur when there are only a few important sources of information in the data, which 

are common to many variables. Principal Components Analysis (PCA) is a method for 

extracting the most important uncorrelated sources of information in the data. The objective 

of PCA is to reduce the dimensionality of the problem so that only the most important 

sources of information are used, that is, by taking only the first m principal components. 

Principal components are a set of variables that define a projection that encapsulates the 

maximum amount of variation in a dataset and is orthogonal 1 (and therefore uncorrelated) to 

the previous principal component of the same dataset. PCA is very useful in highly correlated 

systems, since the variation in the system can be explained by just a few principal components, 

which are the independent sources of variation in the system. The lack of correlation between 

the principal components results in dimension reduction of the system by taking only a few of 

the principal components.  

2.2 Theoretical Framework 

The goal is to find the eigenvectors of the covariance matrix. These eigenvectors correspond 

to the directions of the principal components of the original  data; their statistical significance 

is given by their corresponding eigenvalues. The principal components are linear combinations 

of the original data series, that is, they are obtained by multiplying X (the matrix of the original 

data values) by the matrix of eigenvectors. The original series X is said to be regressed onto a 

small number of principal components. In this way, PCA implements a dimensionality 

reduction because it allows one to retain only a small number of components. By choosing the 

components with the largest variance, a large portion of the total variance of X can be 

explained. At this point, a reduced number of principal components yield a simplified 

regression, which results in a more robust estimation of the covariance matrix of the original 

data series though only a fraction of the variance is explained. 
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 A combination of the variables must be found that explains as much as possible f the original 

data. This combination is called the first principal component, and n be thought of as a single 

axis in space. When each observation is projected on that axis the resulting values form a new 

variable with highest variance among all possible choices of the first principal component. A 

combination is then found which explains as much as possible of what remains behind, that 

being the second principal component - and it is another axis in space, which is perpendicular 

to the first principal component. Projecting the observations onto this axis generates another 

new variable with highest variance among all possible choices of the second principal 

component. Proceeding in this way all m principal components can be found.  

2.3 PCA Method 

The data that is input to PCA must be stationary. Prices, rates or yields are generally non-

stationary, and will then have to be transformed, commonly into returns, before PCA is 

applied. The input into PCA is a correlated system of k stationary time series (order of 

polynomial), that is, a T × k stationary data matrix X, where T represents the time points (term 

to maturity). PCA is based on an eigenvalue and eigenvector analysis of the k × k symmetric 

matrix of covariance between the variables in X. The symmetric covariance matrix is given by 

XXV '=  

 2.0-1 

Consider a data of T rows (terms) of n column (polynomials). Let X denotes the T × n data 

matrix. The aim is to find a linear combination of the observed asset returns that explains as 

much as possible of the observed variability in the data. It will be shown that the weights in the 

linear combination can be chosen from the set of eigenvectors of the covariance matrix. 

Denote by W the n×n matrix of eigenvectors of V. Thus Λ is the n×n diagonal matrix of 

eigenvalues of V. The columns of W are then ordered according to the size of corresponding 

eigenvalue. That is, the eigenvalues are sorted in descending order and then the columns of 

the eigenvector matrix are ordered corresponding to the eigenvalues. Thus if W = (wij) for i, j 

= 1,. . . ,k, then the mth column of W, denoted wm = (w1m, . . . ,wTm), is the T × 1 eigenvector 

corresponding to the eigenvalue λm and the column labeling has been chosen such that λ1 > 

λ2 > · · · > λk. The first column of W maximizes the explained variance; similarly, the 
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second column of W maximizes the explained variability in the data, given the explanation 

already provided by the first column. Since the eigenvectors are orthogonal to each other, 

the principal components obtained as the linear combinations using the eigenvectors as the 

weights, will be uncorrelated with each other. Much of the total system variability can be 

accounted for by a small number k, of the principal components. There is almost as much 

information in the k components as there is in the original dataset. The k principal 

components can then be used to replace the initial dataset. 

Let the random vector X = [X1, X2, . . . , Xk] have the covariance matrix l with eigenvalues λ1 

> λ2 > · · · > λn> 0. The principal components are given by: 

P1 = w01X0 = Xw1 = w11X1 + w21X2 + · · · + wn1Xn 

P2 = w02X0 = Xw2 = w12X1 + w22X2 + · · · + wn2Xn 

. 

. 

. 
Pm = w0mX0 = Xwm = w1mX1 + w2mX2 + · · · + wnmXn 

The kth principal component of the system is defined by: 

Pk = w0kX0 = w1kX1 + w2kX2 + · · · + wnkXn 

Where Xi denotes the ith column of X, the historical input data on the ith variable 

in the system. 

In matrix notation, we have the following: 

mm XwP =  

 2.0-2 

Hence, the principal components are those linear combinations P1, P2, . . . , Pk whose 

variances are as large as possible. Each principal component is a time series of the 

transformed X variables, and the full T ×n matrix of principal components, having Pm as its 

mth column may be written as 

XWP =  

 2.0-3 

However, W is an orthogonal matrix (since it is the matrix of eigenvectors), that is W ’ 

=W−1 and so we have P’P = TΛ. P’P/T = Λ, gives the correlation matrix of the principal 
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components. This is a diagonal matrix, since Λ is the k × k diagonal matrix of eigenvalues. 

Where 
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In addition, the off-diagonal entries are all zero. This implies that the columns of P are 

uncorrelated, and the variance of the mth principal component is λm. Since the variance of 

each principal component is determined by its corresponding eigenvalue, the proportion of 

the total variation in X that is explained by the mth principal component is λm/(sum of 

eigenvalues). Where the sum of the eigenvalues gives the total population variance, which is 

given by = λ1+λ2+· · ·+λn, and consequently the proportion of total variance due to the mth 

principal component is: 

n

m
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Because of the choice of column labeling in W the principal components have been ordered so 

that P1 belongs to the first and largest eigenvalue λ1, P2 belongs to the second largest 

eigenvalue λ2, and so on. In a highly correlated system the first eigenvalue will be much larger 

than the others, as a result the first principal component will alone explain a large portion of 

the variability in the system. If most (for instance 80-90%) of the total population variance can 

be attributed to the first two or three principal components, then these components can 

essentially replace the original k variables without much loss of information. 
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3.0 ESTIMATING YIELD CURVE 

3.1 Polynomials Approach 

As we propose the following zero-coupon yield curve; 
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We can also write as  

Β= )()( tXtY  
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B is a column vector of n coefficients; 
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The polynomial of 1/(1+t) is flexible and capable of rendering all of the common yield curve 

shapes. It is well behaves at both ends of the term structure, 
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A parsimonious modeling approach require the yield curve to be specified with the smallest 

number of parameters that provide an acceptable to the observed bond data, models with 

three and four are good fit to the data. In estimation I generate eight orders of polynomials for 

each term to maturity for further analysis, but estimate term structure from polynomial of 
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1/(1+t) of four parameters, decided to estimate four parameter, it does not follow that one 

would use the first four polynomial terms.      

3.2 Principal Component Analysis Approach 

I proposed a principal component approach to selecting a k parameter model from possible n 

polynomial terms. We can write as  

α)()( tPtY P =  

Where,  

a is a column vector of k coefficients 
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P(t) is a row vector and AtXtP )()( =  

Let P and X be T×n matrices, composed of rows of P(t) and X(t) for t = 1 to T, respectively. 

So, we can write as  

XWP =  

Where, W is n×n matrix of eigenvectors of XXC '= of the same size as W. Λ is n×n diagonal 

matrix of eigen values and each column of eigen values are in descending order with respect to 

eigen values and also compose the each column of eigenvector corresponding to eigen values. 

The principal component, P, contains k orthogonal vectors with the same number of 

observation as the original series that explain the maximum possible variance of the original 

series.   

While polynomial of 1/(1+t) are naturally correlated, the principal components are not. A 

comparison of first three polynomials of 1/(1+t),  and first three principal components of the 

polynomials is presented in Table 1 & 2 band Figure 1 & 2. It shows the high degree of 

correlation between the first three polynomials of 1/(1+t). This correlation is eliminated by 

combining these variables in to principal components.     
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Table 3 shows the estimated model and coefficients of principal component of the eight 

polynomial terms of 1/(1+t). I estimate three models of first three, two and one principal 

components. The intercept term of all models is constant. In Table 4 displays how the addition 

of each of the first three principal components provides considerable increase in the bond 

price residual sum of square residuals, because only first component is significant in all and it 

covers 93% of variation of original data.  

In figure 3, the estimated zero coupon yield curve of 3-degree polynomial term of 1/(1+t) is 

increases from 2% to 3.87%, from term 6 months to 4 years and after 4 years, it is flat in 

shape. The term structure from first polynomial is much better approximation as compare to 

polynomial approach; it flexible and best fitted than the polynomial.   

Principal Component’s series are orthogonal to each other. In linear regression analysis 

orthgoanality is an advantage as variable are independent n that they can be added or 

subtracted from, a specification without altering the value of the, least square estimated 

parameters on the other include variable. This property is beneficial in one attempt to select an 

additional explanatory variable from number of candidate variable.  

3.3 Conclusion 

The simple polynomial form results in estimated models where the zero coupon yield diverge 

to plus or minus infinity as the term increases. The simple polynomial model is inconsistent 

with both theoretical consideration and observational reality. 

I use small number of principal component of a larger number of polynomial of 1/(1+t) to 

produce an estimated zero coupon yield curve. Estimating a model via principal components 

enable us to take advantage of the principal component’s lack of co linearity and promoted 

convergence in the non-linear estimation process. 

The yield curve from polynomials of 1/(1+t) displayed tractable estimation properties of the 

yield curve modeled as polynomial of t. However, unlike the polynomial of t, the yield curve of 

polynomial of 1/(1+t) had stable long term yields.  

As we see in the Figures 3, 4, 5 and 6 of term structure form four different methodologies, 

polynomials of 1/(1+t), principal components of polynomials of 1/(1+t) McCulloch cubic 
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spline and Nelson & Siegel methods. The term structure from simple polynomial of 1/(1+t) 

has no flexibility and converge very early at rate of approximately 4% at 4 term to maturity. 

The term structure from principal component (PCA) has much flexibility, especially at both 

ends, spot rate at 6 month is around 1.5% and it increase rapidly to 5 years maturity and then 

gradually. However, long rate from principal component approach is around 5.5%. Zero-

coupon yield curve from methods, Nelson & Siegel and McCulloch cubic spline are flexible 

and spot rate for 6-months are 2% and 2.5% respectively. 
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Table 1: Covariance and Correlation of polynomials of 1/(1+t) 

 

 

 

Table 2: Covariance and Correlation of Principal Components 
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Figure 1: Plynomials of 1/(1+t) 

 

-0.700

-0.600

-0.500

-0.400

-0.300

-0.200

-0.100

0.000

0.100

0.200

0.300

1st PC

2nd PC

3rd PC

 

Figure 2: Principal Components of Polynomials of 1/(1+t) 
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Table 3: Estimated models parameter of yield curve from 
Principal Components 

 

 

Table 4: Zero curve estimation results from PCA 
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Figure 3: Estimated Zero yield curve from 3-degree polynomial 
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Figure 4: Estimated Zero curve from first Principal Components 
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Figure 5: Estimated Zero curve from McCulloch Cubic Spline 

 
 

 

Figure 6: Estimated Zero curve from Nelson & Siegel 
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Figure 7: Coding of Excel macros by using Matlab commands 

 



 

 24

BIBLIOGRAPHY 

Hunt, Ben and Terry, Chris (1998), Zero-Coupon Yield Curve Estimation: A Principal Component, 

Polynomial Approach, School of Finance & Economics working paper 81, UT Sydney. 

Darbha, G., Roy, S.D. and Pawaskar, V. (2002), Idiosyncratic Factors in Pricing Severing Bonds: An 

Analysis of the Government of India Bond Market, National Stock Exchange. 

Jones, Charles P (2002), Investments: Analysis and Management, Eighth Edition,  John Wiley & Sons, 

Inc. 

Bonney, Lisa (2006), Application of Principal Component Analysis to the Equity Derivative Market. 

University of the Witwatersrand, Johannesburg.  

Monetary & Economic Department (2005), Zero-coupon yield curves: technical documentation, BIS 

Papers No. 25, Bank for International Settlement.. 

Bliss, Robert R. (1996), Testing Term Structure Estimation Methods, Working Paper 96-12a, Federal 
Bank of Atlanta. 

Hull, John C. (2003), Options, Futures, and Other Derivatives, fifth edition, Prentice Hall 
International. 
 
Jorion, Philip  (2002), Financial Risk Management Handbook, John Wiley & Sons, Inc. 
 
 



 

 25

INDEX 

covariance, 12 

Current yield, 5 

Data, 5 

internal rate of return, 5 

IRR. See internal rate of retrurn 

Laguerre, 9 

McCulloch, 8 

Nelson and Siegel, 7 

orthogonal, 11 

Pakistan Investment Bonds, 5 

parametric, 7 

PCA. See Principal Component Analysis 

PIB. See Pakistan Investment Bond 

polynomial, 9 

present value, 4 

Pricing Bonds, 4 

Principal Components Analysis, 11 

Spline, 8 

spline-based approaches, 7 

spot rate, 5 

Svensson, 7 

Term Structure of Interest Rate, 4 

yield, 5 

Yield to Maturity, 5 

YTM. See Yield to Maturity 

zero coupon yield curve. See Term 

Structure of Interest Rate 

zero-coupon rate, 5 

zero-coupon yield curve. See Term 

Structure of Interest Rate 

  


